MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios
Journal Article

Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios

2020
Request Book From Autostore and Choose the Collection Method
Overview
Synthetic Aperture Radar (SAR) Tomography is a technique to provide direct three-dimensional (3D) imaging of the illuminated targets by processing SAR data acquired from different trajectories. In a large part of the literature, 3D imaging is achieved by assuming mono-dimensional (1D) approaches derived from SAR Interferometry, where a vector of pixels from multiple SAR images is transformed into a new vector of pixels representing the vertical profile of scene reflectivity at a given range, azimuth location. However, mono-dimensional approaches are only suited for data acquired from very closely-spaced trajectories, resulting in coarse vertical resolution. In the case of continuous media, such as forests, snow, ice sheets and glaciers, achieving fine vertical resolution is only possible in the presence of largely-spaced trajectories, which involves significant complications concerning the formation of 3D images. The situation gets even more complicated in the presence of irregular trajectories with variable headings, for which the one theoretically exact approach consists of going back to raw SAR data to resolve the targets by 3D back-projection, resulting in a computational burden beyond the capabilities of standard computers. The first aim of this paper is to provide an exhaustive discussion of the conditions under which high-quality tomographic processing can be carried out by assuming a 1D, 2D, or 3D approach to image formation. The case of 3D processing is then further analyzed, and a new processing method is proposed to produce high-quality imaging while largely reducing the computational burden, and without having to process the original raw data. Furthermore, the new method is shown to be easily parallelized and implemented using GPU processing. The analysis is supported by results from numerical simulations as well as from real airborne data from the ESA campaign AlpTomoSAR.