MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures
Journal Article

Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures

2021
Request Book From Autostore and Choose the Collection Method
Overview
In view of their unique shape morphing behaviour, dielectric elastomer-based minimum energy structures (DEMES) have received an increasing attention in the technology of electroactive soft transduction. Because several of them undergo a time-dependent motion during their operation, understanding their nonlinear dynamic behaviour is crucial to their effective design. Additionally, in the recent past, there has been a growing scientific interest in imparting anisotropy to the material behaviour of dielectric elastomers in view of ameliorating their actuation performance. Spurred with these ongoing efforts, this paper presents an analytical framework for investigating the nonlinear dynamic behaviour of aniso-visco-hyperelastic DEMES actuator with an elementary rectangular geometry. We use a rheological model comprising two Maxwell elements connected in parallel with two single spring elements for modelling the material behaviour of the DE membrane. The governing equations of motion for the underlying non-conservative system are then derived using the Euler–Lagrange equation. The proposed model is used for building insights into the attainable equilibrium states, periodicity of the response as well as the resonant behaviour of the DEMES actuator over a feasible range of anisotropy and viscosity parameters. Our results reveal that the DEMES with hyperelastic material properties exhibits a supercritical pitchfork bifurcation of equilibrium state which is further accelerated in terms of attained equilibrium angle due to membrane anisotropy. A significant enhancement in the equilibrium angle attained by the structure with the extent of membrane anisotropy parameter is observed, indicating a favourable impact of material anisotropy. Poincare maps and phase-portraits are presented for assessing the periodicity of the nonlinear oscillations. The frequency response of the actuator for a combined DC and AC load indicates an upsurge in the resonant frequency with an increase in anisotropy parameter. The underlying analytical model and the trends presented in this study can find their potential use in the design and development of the futuristic anisotropic DEMES actuators subjected to time-dependent actuation.

MBRLCatalogueRelatedBooks