MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds
Journal Article

Neural network modeling of monthly salinity variations in oyster reef in Apalachicola Bay in response to freshwater inflow and winds

2019
Request Book From Autostore and Choose the Collection Method
Overview
Estuarine organisms have varying tolerances and respond differently to salinity. Bottom-dwelling species such as oysters tolerate some change in salinity, but salinity outside an acceptable range will negatively affect their abundance as well as their survival within this sensitive ecosystem. Salinity in the Apalachicola Bay is heavily influenced by freshwater inflow discharged from the Apalachicola River. In this study, artificial neural network (ANN) was applied to correlate the monthly salinity variations at an oyster reef in Apalachicola Bay to the river inflow and wind. Parameters in the ANN were trained until the simulated salinity data correlated well with the observations from 2005 to 2007. Once the model is trained and optimized, the ANN structure is verified comparing the simulated data to the second dataset from 2008–2010. Four neural network training algorithms, including gradient decent, scaled conjugate gradient, quasi-Newton, and Levenberg–Marquardt, have been evaluated. The scaled conjugate gradient algorithm was selected for this study because it provides the best correlation with the value of 0.85. The verified ANN model was applied to investigate the potential impacts of freshwater reductions from upstream river on the salinity in the oyster reef. By comparing the resulting salinity from ANN model simulations to the optimal salinity range for oyster growth, the impacts of freshwater reduction scenarios on oyster growth can be examined.