MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems
Journal Article

Optimal work-conserving scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event systems

2021
Request Book From Autostore and Choose the Collection Method
Overview
Real-time scheduling strategies for safety-critical systems are primarily focused on ensuring correctness, both functional and temporal. In order to provide the desired predictability in such systems, it is often advisable that all timing requirements be guaranteed offline, before putting the system into operation. Formal approaches allow for all necessary and sufficiency conditions corresponding to a feasible schedule to be checked in a systematic manner. This enables formal approaches to act as effective mechanisms for providing timing guarantees required by safety-critical systems. In this work, we develop a scheduler synthesis framework for the optimal work-conserving scheduling of dynamically arriving, sporadic tasks using a formal approach known as “supervisory control of timed discrete-event systems” (SCTDES). The synthesis process starts with the construction of a resource-constraint-aware task execution model and a deadline-constraint-aware timing specification model, for each task in the given real-time system. The system model (i.e., composite task execution model) is then derived and transformed to guarantee work-conserving co-execution of tasks. Such a work-conserving approach enables the synthesis of schedules which avoid processor idling in the presence of ready-to-execute tasks. Next, we use the (transformed) system and specification models to obtain a supervisor which can be used to construct an optimal scheduler for the given real-time system. Finally, the applicability of the proposed scheme for real-world scenarios is shown by presenting a case study on an instrument control system (ICS).