MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments
Journal Article

A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments

2025
Request Book From Autostore and Choose the Collection Method
Overview
Wireless sensor networks (WSNs) are deployed in terrestrial environments. However, on the sea surface, sensor nodes can drift due to ocean currents and wind; thus, network topologies continuously evolve, and the communication between nodes is frequently disrupted. These unstable connections significantly degrade data transmission stability and overall network performance. These problems are particularly significant in maritime regions where the sea state changes rapidly, thus imposing stringent technical requirements on the design of long-range, reliable, low-latency, and persistent sensing systems. This study proposes a wireless sensor network architecture for sea surface drifting nodes, which is termed Drift-Aware Routing and Clustering with Recovery (DARCR). The proposed system consists of three major components: (1) an enhanced dynamic drift model that more accurately predicts node movement for realistic ocean conditions; (2) a cluster-based framework that prevents disconnection and minimizes delay, which improves cluster stability and adaptability to dynamic environments through refined clustering and route setup mechanisms; and (3) a self-recovery routing strategy for re-establishing communication after disconnection. The proposed method is evaluated using ocean current data from the Copernicus Ocean Data Center simulating a 60-h drifting scenario around the central Taiwan Strait. The experimental results show that the average hourly disconnection rate is maintained at 6.2%, with a variance of 0.31%, and the transmission of newly sensed data is completed within 3 to 5 s, with a maximum delay of approximately 10 s. These findings demonstrate the feasibility of maintaining communication stability and low-latency data transmission for sea surface WSNs that operate in highly dynamic marine conditions.