MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Orbital branching
Orbital branching
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Orbital branching
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Orbital branching
Orbital branching

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Orbital branching
Journal Article

Orbital branching

2011
Request Book From Autostore and Choose the Collection Method
Overview
We introduce orbital branching , an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry that is not present at the root node. These groups of equivalent variables, called orbits, are used to create a valid partitioning of the feasible region that significantly reduces the effects of symmetry while still allowing a flexible branching rule. We also show how to exploit the symmetries present in the problem to fix variables throughout the branch-and-bound tree. Orbital branching can easily be incorporated into standard integer programming software. Through an empirical study on a test suite of symmetric integer programs, the question as to the most effective orbit on which to base the branching decision is investigated. The resulting method is shown to be quite competitive with a similar method known as isomorphism pruning and significantly better than a state-of-the-art commercial solver on symmetric integer programs.