MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
Journal Article

Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices

2024
Request Book From Autostore and Choose the Collection Method
Overview
Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns. In response, we formulated novel, non-toxic procedures for examining paper evidence, particularly thermal papers. Our laboratory model utilizes a polyvinyl alcohol polymer as a rigid matrix to emulate the thermal paper’s environment, enabling precise control over the spectroscopic characteristics of 1,8-diazafluoro-9-one (DFO). We identified and analyzed the cyclodimer 1,8-diazafluoren-9-one (DAK DFO), which is a non-toxic and biocompatible alternative for revealing forensic marks. The reagents used to preserve fingerprints were optimized for their effectiveness and stability. Using stationary absorption and emission spectroscopy, along with time-resolved emission studies, we verified the spectroscopic attributes of the new structures under deliberate aggregation conditions. Raman spectroscopy and quantum mechanical computations substantiated the cyclodimer’s configuration. The investigation provides robust scientific endorsement for the novel compound and its structural diversity, influenced by the solvatochromic sensitivity of the DFO precursor. Our approach to monitoring aggregation processes signifies a substantial shift in synthetic research paradigms, leveraging simple chemistry to yield an innovative contribution to forensic science methodologies.