MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Emotion recognition based on physiological signals using brain asymmetry index and echo state network

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
Journal Article

Emotion recognition based on physiological signals using brain asymmetry index and echo state network

2019
Request Book From Autostore and Choose the Collection Method
Overview
This paper proposes a method to evaluate the degree of emotion being motivated in continuous music videos based on asymmetry index (AsI). By collecting two groups of electroencephalogram (EEG) signals from 6 channels (Fp1, Fp2, Fz and AF3, AF4, Fz) in the left and right hemispheres, multidimensional directed information is used to measure the mutual information shared between two frontal lobes, and then, we get AsI to estimate the degree of emotional induction. In order to evaluate the effect of AsI processing on physiological emotion recognition, 32-channel EEG signals, 2-channel EEG signals and 2-channel EMG signals are selected for each subject from the DEAP dataset, and different sub-bands are extracted using wavelet packet transform. k -means algorithm is used to cluster the wavelet packet coefficients of each sub-band, and the probability distribution of the coefficients under each cluster is calculated. Finally, the probability distribution value of each sample is sent as the original features into echo state network for unsupervised intrinsic plasticity training; the reservoir state nodes are selected as the final feature vector and fed into the support vector machine. The experimental results show that the proposed algorithm can achieve an average recognition rate of 70.5% when the subjects are independent. Compared with the case without AsI, the recognition rate is increased by 8.73%. On the other hand, the ESN is adopted for the original physiological feature refinement which can significantly reduce feature dimensions and be more beneficial to the emotion classification. Therefore, this study can effectively improve the performance of human–machine interface systems based on emotion recognition.