MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Lax–Oleinik semi-group: a Hamiltonian point of view
The Lax–Oleinik semi-group: a Hamiltonian point of view
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Lax–Oleinik semi-group: a Hamiltonian point of view
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Lax–Oleinik semi-group: a Hamiltonian point of view
The Lax–Oleinik semi-group: a Hamiltonian point of view

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Lax–Oleinik semi-group: a Hamiltonian point of view
The Lax–Oleinik semi-group: a Hamiltonian point of view
Journal Article

The Lax–Oleinik semi-group: a Hamiltonian point of view

2012
Request Book From Autostore and Choose the Collection Method
Overview
The weak KAM theory was developed by Fathi in order to study the dynamics of convex Hamiltonian systems. It somehow makes a bridge between viscosity solutions of the Hamilton–Jacobi equation and Mather invariant sets of Hamiltonian systems, although this was fully understood only a posteriori. These theories converge under the hypothesis of convexity, and the richness of applications mostly comes from this remarkable convergence. In this paper, we provide an elementary exposition of some of the basic concepts of weak KAM theory. In a companion paper, Albert Fathi exposed the aspects of his theory which are more directly related to viscosity solutions. Here, on the contrary, we focus on dynamical applications, even if we also discuss some viscosity aspects to underline the connections with Fathi's lecture. The fundamental reference on weak KAM theory is the still unpublished book Weak KAM theorem in Lagrangian dynamics by Albert Fathi. Although we do not offer new results, our exposition is original in several aspects. We only work with the Hamiltonian and do not rely on the Lagrangian, even if some proofs are directly inspired by the classical Lagrangian proofs. This approach is made easier by the choice of a somewhat specific setting. We work on ℝd and make uniform hypotheses on the Hamiltonian. This allows us to replace some compactness arguments by explicit estimates. For the most interesting dynamical applications, however, the compactness of the configuration space remains a useful hypothesis and we retrieve it by considering periodic (in space) Hamiltonians. Our exposition is centred on the Cauchy problem for the Hamilton–Jacobi equation and the Lax–Oleinik evolution operators associated to it. Dynamical applications are reached by considering fixed points of these evolution operators, the weak KAM solutions. The evolution operators can also be used for their regularizing properties; this opens an alternative route to dynamical applications.
Publisher
Royal Society of Edinburgh Scotland Foundation,Cambridge University Press,Royal Society of Edinburgh