MbrlCatalogueTitleDetail

Do you wish to reserve the book?
gBOIN
gBOIN
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
gBOIN
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
gBOIN
gBOIN

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
gBOIN
Journal Article

gBOIN

2019
Request Book From Autostore and Choose the Collection Method
Overview
The landscape of oncology drug development has recently changed with the emergence of molecularly targeted agents and immunotherapies. These new therapeutic agents appear more likely to induce multiple low or moderate grade toxicities rather than dose limiting toxicities. Various model-based dose finding designs and toxicity severity scoring systems have been proposed to account for toxicity grades, but they are difficult to implement because of the use of complicated dose–toxicity models and the requirement to refit the model at each decision of dose escalation and de-escalation. We propose a generalized Bayesian optimal interval design, gBOIN, that accommodates various existing toxicity grade scoring systems under a unified framework. As a model-assisted design, gBOIN derives its optimal decision rule on the basis of the exponential family of distributions but is carried out in a simple way as the algorithm-based design: its decision of dose escalation and de-escalation involves only a simple comparison of the sample mean of the end point with two prespecified dose escalation and deescalation boundaries. No model fitting is needed. We show that gBOIN has the desirable finite property of coherence and a large sample property of consistency. Numerical studies show that gBOIN yields good performance that is comparable with or superior to that of some existing, more complicated model-based designs. A Web application for implementing gBOIN is freely available from http://www.trialdesign.org.