MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Pumilio2 Promotes Growth of Mature Neurons
Pumilio2 Promotes Growth of Mature Neurons
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Pumilio2 Promotes Growth of Mature Neurons
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Pumilio2 Promotes Growth of Mature Neurons
Pumilio2 Promotes Growth of Mature Neurons

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Pumilio2 Promotes Growth of Mature Neurons
Pumilio2 Promotes Growth of Mature Neurons
Journal Article

Pumilio2 Promotes Growth of Mature Neurons

2021
Request Book From Autostore and Choose the Collection Method
Overview
RNA-binding proteins (RBPs) are essential regulators controlling both the cellular transcriptome and translatome. These processes enable cellular plasticity, an important prerequisite for growth. Cellular growth is a complex, tightly controlled process. Using cancer cells as model, we looked for RBPs displaying strong expression in published transcriptome datasets. Interestingly, we found the Pumilio (Pum) protein family to be highly expressed in all these cells. Moreover, we observed that Pum2 is regulated by basic fibroblast growth factor (bFGF). bFGF selectively enhances protein levels of Pum2 and the eukaryotic initiation factor 4E (eIF4E). Exploiting atomic force microscopy and in vitro pulldown assays, we show that Pum2 selects for eIF4E mRNA binding. Loss of Pum2 reduces eIF4E translation. Accordingly, depletion of Pum2 led to decreased soma size and dendritic branching of mature neurons, which was accompanied by a reduction in essential growth factors. In conclusion, we identify Pum2 as an important growth factor for mature neurons. Consequently, it is tempting to speculate that Pum2 may promote cancer growth.