MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method
Journal Article

A Node Selection Strategy in Space-Air-Ground Information Networks: A Double Deep Q-Network Based on the Federated Learning Training Method

2024
Request Book From Autostore and Choose the Collection Method
Overview
The Space-Air-Ground Information Network (SAGIN) provides extensive coverage, enabling global connectivity across a diverse array of sensors, devices, and objects. These devices generate large amounts of data that require advanced analytics and decision making using artificial intelligence techniques. However, traditional deep learning approaches encounter drawbacks, primarily, the requirement to transmit substantial volumes of raw data to central servers, which raises concerns about user privacy breaches during transmission. Federated learning (FL) has emerged as a viable solution to these challenges, addressing both data volume and privacy issues effectively. Nonetheless, the deployment of FL faces its own set of obstacles, notably the excessive delay and energy consumption caused by the vast number of devices and fluctuating channel conditions. In this paper, by considering the heterogeneity of devices and the instability of the network state, the delay and energy consumption models of each round of federated training are established. Subsequently, we introduce a strategic node selection approach aimed at minimizing training costs. Building upon this, we propose an innovative, empirically driven Double Deep Q Network (DDQN)-based algorithm called low-cost node selection in federated learning (LCNSFL). The LCNSFL algorithm can assist edge servers in selecting the optimal set of devices to participate in federated training before the start of each round, based on the collected system state information. This paper culminates with a simulation-based comparison, showcasing the superior performance of LCNSFL against existing algorithms, thus underscoring its efficacy in practical applications.