MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection
Journal Article

Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection

2023
Request Book From Autostore and Choose the Collection Method
Overview
Urban tree canopy (UTC) area is an important index for evaluating the urban ecological environment; the very high resolution (VHR) images are essential for improving urban tree canopy survey efficiency. However, the traditional image classification methods often show low robustness when extracting complex objects from VHR images, with insufficient feature learning, object edge blur and noise. Our objective was to develop a repeatable method—superpixel-enhanced deep neural forests (SDNF)—to detect the UTC distribution from VHR images. Eight data expansion methods was used to construct the UTC training sample sets, four sample size gradients were set to test the optimal sample size selection of SDNF method, and the best training times with the shortest model convergence and time-consumption was selected. The accuracy performance of SDNF was tested by three indexes: F1 score (F1), intersection over union (IoU) and overall accuracy (OA). To compare the detection accuracy of SDNF, the random forest (RF) was used to conduct a control experiment with synchronization. Compared with the RF model, SDNF always performed better in OA under the same training sample size. SDNF had more epoch times than RF, converged at the 200 and 160 epoch, respectively. When SDNF and RF are kept in a convergence state, the training accuracy is 95.16% and 83.16%, and the verification accuracy is 94.87% and 87.73%, respectively. The OA of SDNF improved 10.00%, reaching 89.00% compared with the RF model. This study proves the effectiveness of SDNF in UTC detection based on VHR images. It can provide a more accurate solution for UTC detection in urban environmental monitoring, urban forest resource survey, and national forest city assessment.

MBRLCatalogueRelatedBooks