MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach
Journal Article

MultiLTR: Text Ranking with a Multi-Stage Learning-to-Rank Approach

2025
Request Book From Autostore and Choose the Collection Method
Overview
The division of retrieval into multiple stages has evolved to balance efficiency and effectiveness among various ranking models. Faster but less accurate models are used to retrieve results from the entire corpus. Slower yet more precise models refine the ranking within the top candidate list. This study proposes a multi-stage learning-to-rank (MultiLTR) method. MultiLTR applies learning-to-rank techniques across multiple stages. It incorporates text from different fields such as titles, body content, and abstracts to produce a more comprehensive and accurate ranking. MultiLTR iteratively refines ranking accuracy through sequential processing phases. It dynamically selects top-performing rankers from a diverse candidate pool at each stage. Experiments were carried out on benchmark datasets, MQ2007 and MQ2008, using three categories of learning-to-rank algorithms. The results demonstrate that MultiLTR outperforms state-of-the-art ranking approaches, particularly in field-based ranking tasks. This study improves ranking accuracy and offers new insights into enhancing multi-stage ranking strategies.