MbrlCatalogueTitleDetail

Do you wish to reserve the book?
ROBUST LINEAR LEAST SQUARES REGRESSION
ROBUST LINEAR LEAST SQUARES REGRESSION
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
ROBUST LINEAR LEAST SQUARES REGRESSION
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
ROBUST LINEAR LEAST SQUARES REGRESSION
ROBUST LINEAR LEAST SQUARES REGRESSION

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
ROBUST LINEAR LEAST SQUARES REGRESSION
ROBUST LINEAR LEAST SQUARES REGRESSION
Journal Article

ROBUST LINEAR LEAST SQUARES REGRESSION

2011
Request Book From Autostore and Choose the Collection Method
Overview
We consider the problem of robustly predicting as well as the best linear combination of d given functions in least squares regression, and variants of this problem including constraints on the parameters of the linear combination. For the ridge estimator and the ordinary least squares estimator, and their variants, we provide new risk bounds of order d/n without logarithmic factor unlike some standard results, where n is the size of the training data. We also provide a new estimator with better deviations in the presence of heavy-tailed noise. It is based on truncating differences of losses in a min-max framework and satisfies a d/n risk bound both in expectation and in deviations. The key common surprising factor of these results is the absence of exponential moment condition on the output distribution while achieving exponential deviations. All risk bounds are obtained through a PAC-Bayesian analysis on truncated differences of losses. Experimental results strongly back up our truncated min-max estimator.

MBRLCatalogueRelatedBooks