MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations
Journal Article

Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations

2024
Request Book From Autostore and Choose the Collection Method
Overview
Digital substations have adopted a high amount of information and communication technology (ICT) and cyber–physical systems (CPSs) for monitoring and control. As a result, cyber attacks on substations have been increasing and have become a major concern. An intrusion-detection system (IDS) could be a solution to detect and identify the abnormal behaviors of hackers. In this paper, a Deep Neural Network (DNN)-based IDS is proposed to detect malicious generic object-oriented substation event (GOOSE) communication over the process and station bus network, followed by the multiclassification of the cyber attacks. For training, both the abnormal and the normal substation networks are monitored, captured, and logged, and then the proposed algorithm is applied for distinguishing normal events from abnormal ones within the network communication packets. The designed system is implemented and tested with a real-time IEC 61850 GOOSE message dataset using two different approaches. The experimental results show that the proposed system can successfully detect intrusions with an accuracy of 98%. In addition, a comparison is performed in which the proposed IDS outperforms the support vector machine (SVM)-based IDS.