MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Resource allocation of fog radio access network based on deep reinforcement learning
Resource allocation of fog radio access network based on deep reinforcement learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Resource allocation of fog radio access network based on deep reinforcement learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Resource allocation of fog radio access network based on deep reinforcement learning
Resource allocation of fog radio access network based on deep reinforcement learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Resource allocation of fog radio access network based on deep reinforcement learning
Resource allocation of fog radio access network based on deep reinforcement learning
Journal Article

Resource allocation of fog radio access network based on deep reinforcement learning

2022
Request Book From Autostore and Choose the Collection Method
Overview
With the development of energy harvesting technologies and smart grid, the future trend of radio access networks will present a multi‐source power supply. In this article, joint renewable energy cooperation and resource allocation scheme of the fog radio access networks (F‐RANs) with hybrid power supplies (including both the conventional grid and renewable energy sources) is studied. In this article, our objective is to maximize the average throughput of F‐RAN architecture with hybrid energy sources while satisfying the constraints of signal to noise ratio (SNR), available bandwidth, and energy harvesting. To solve this problem, the dynamic power allocation scheme in the network is studied by using Q‐learning and Deep Q Network respectively. Simulation results show that the proposed two algorithms have low complexity and can improve the average throughput of the whole network compared with other traditional algorithms. With the development of energy harvesting technologies and smart grid, the future trend of radio access networks will present a multi‐source power supply. In this article, joint renewable energy cooperation and resource allocation scheme of the fog radio access networks (F‐RANs) with hybrid power supplies (including both the conventional grid and renewable energy sources) is studied. In this article, our objective is to maximize the average throughput of F‐RAN architecture with hybrid energy sources while satisfying the constraints of signal to noise ratio (SNR), available bandwidth, and energy harvesting. To solve this problem, the dynamic power allocation scheme in the network is studied by using Q‐learning and Deep Q Network respectively. Simulation results show that the proposed two algorithms have low complexity and can improve the average throughput of the whole network compared with other traditional algorithms.