MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
Journal Article

A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction

2014
Request Book From Autostore and Choose the Collection Method
Overview
We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of $\\mathit{Re}=150$ . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several ‘measures’ on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements.