MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus
Journal Article

Solar Control of the Pickup Ion Plume in the Dayside Magnetosheath of Venus

2023
Request Book From Autostore and Choose the Collection Method
Overview
Using the 8.5‐year Venus Express measurements, we demonstrate the asymmetric plasma distributions in the Venusian magnetosheath. An escaping plume is formed by pickup oxygen ions in the hemisphere where the motional electric field points outward from Venus, while the velocity of solar wind protons is faster in the opposite hemisphere. The pickup O+ escape rate is estimated to be (3.6 ± 1.4) × 1024 s−1 at solar maximum, which is comparable to the ion loss rate through the magnetotail, and (1.3 ± 0.4) × 1024 s−1 at solar minimum. The increase of O+ fluxes with extreme ultraviolet (EUV) intensity is significant upstream of the bow shock, partially attributed to the increase of exospheric neutral oxygen density. However, the solar wind velocity just has a slight effect on the pickup O+ escape rate in the magnetosheath, while the effect of solar wind density is not observed. Our results suggest the pickup O+ escape rate is mainly controlled by EUV radiation. Plain Language Summary The atmospheric evolution and water escape of Venus might be influenced by the solar wind‐Venus interaction. The atoms outside the induced magnetosphere are ionized by the solar radiation and accelerated to the escape velocity by solar wind electric field. In this way, the oxygen ions are picked up by solar wind and lost from the atmosphere to space. We use the data from Venus Express spacecraft to analyze the distribution of pickup oxygen ions in the vicinity of the planet. The planetary oxygen ions form a strong escaping plume, indicating the pickup process is an efficient escape channel removing the atmospheric particles. With an enhanced solar extreme ultraviolet radiation, the escape rate through this channel would be higher because more ions are produced and then picked up. This indicates an enhanced ion loss billions of years ago since the young Sun is more active, which might be a reason for the disappearance of a presumably‐existed ocean. Key Points The pickup O+ escape rate at Venus increases with solar activity, and it is comparable to the ion loss rate through the magnetotail The solar wind velocity has a slight effect on the pickup O+ escape rate in the magnetosheath The neutral oxygen density upstream of the bow shock might increase by a factor of two from solar minimum to maximum