Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
by
Shlossberg, Menachem
in
Equivalence
/ Fermat numbers
/ Fermat primes
/ Fermat's last theorem
/ Gaussian rational field
/ Mathematical research
/ Matrices
/ Mersenne primes
/ minimal group
/ Prime numbers
/ Questions
/ special linear group
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
by
Shlossberg, Menachem
in
Equivalence
/ Fermat numbers
/ Fermat primes
/ Fermat's last theorem
/ Gaussian rational field
/ Mathematical research
/ Matrices
/ Mersenne primes
/ minimal group
/ Prime numbers
/ Questions
/ special linear group
2023
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
by
Shlossberg, Menachem
in
Equivalence
/ Fermat numbers
/ Fermat primes
/ Fermat's last theorem
/ Gaussian rational field
/ Mathematical research
/ Matrices
/ Mersenne primes
/ minimal group
/ Prime numbers
/ Questions
/ special linear group
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
Journal Article
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
2023
Request Book From Autostore
and Choose the Collection Method
Overview
The question is still open as to whether there exist infinitely many Fermat primes or infinitely many composite Fermat numbers. The same question concerning Mersenne numbers is also unanswered. Extending some recent results of Megrelishvili and the author, we characterize the Fermat primes and the Mersenne primes in terms of the topological minimality of some matrix groups. This is achieved by showing, among other things, that if F is a subfield of a local field of characteristic ≠2, then the special upper triangular group ST+(n,F) is minimal precisely when the special linear group SL(n,F) is. We provide criteria for the minimality (and total minimality) of SL(n,F) and ST+(n,F), where F is a subfield of C. Let Fπ and Fc be the set of Fermat primes and the set of composite Fermat numbers, respectively. As our main result, we prove that the following conditions are equivalent for A∈Fπ,Fc: A is finite; ∏Fn∈ASL(Fn−1,Q(i)) is minimal, where Q(i) is the Gaussian rational field; and ∏Fn∈AST+(Fn−1,Q(i)) is minimal. Similarly, denote by Mπ and Mc the set of Mersenne primes and the set of composite Mersenne numbers, respectively, and let B∈Mπ,Mc. Then the following conditions are equivalent: B is finite; ∏Mp∈BSL(Mp+1,Q(i)) is minimal; and ∏Mp∈BST+(Mp+1,Q(i)) is minimal.
Publisher
MDPI AG
This website uses cookies to ensure you get the best experience on our website.