MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Critical non-Hermitian topology induced quantum sensing
Critical non-Hermitian topology induced quantum sensing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Critical non-Hermitian topology induced quantum sensing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Critical non-Hermitian topology induced quantum sensing
Critical non-Hermitian topology induced quantum sensing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Critical non-Hermitian topology induced quantum sensing
Critical non-Hermitian topology induced quantum sensing
Journal Article

Critical non-Hermitian topology induced quantum sensing

2024
Request Book From Autostore and Choose the Collection Method
Overview
Non-Hermitian (NH) physics predicts open quantum system dynamics with unique topological features such as exceptional points and the NH skin effect. We show that this new paradigm of topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced sensitivity reaching Heisenberg scaling. Such enhancement occurs close to a spectral topological phase transition, where the entire spectrum undergoes a delocalization transition. We provide an explanation for this enhanced sensitivity based on the closing of point gap, which is a genuinely NH energy gap with no Hermitian counterpart. This establishes a direct connection between energy-gap closing and quantum enhancement in the NH realm. Our findings are demonstrated through several paradigmatic NH topological models in various dimensions and potential experimental implementations.