MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films
Journal Article

Using a fast hybrid pixel detector for dose-efficient diffraction imaging beam-sensitive organic molecular thin films

2023
Request Book From Autostore and Choose the Collection Method
Overview
We discuss the benefits and showcase the applications of using a fast, hybrid-pixel detector (HPD) for 4D-STEM experiments and emphasize that in diffraction imaging the structure of molecular nano-crystallites in organic solar cell thin films with a dose-efficient modality 4D-scanning confocal electron diffraction (4D-SCED). With 4D-SCED, spot diffraction patterns form from an interaction area of a few nm while the electron beam rasters over the sample, resulting in high dose effectiveness yet highly demanding on the detector in frame speed, sensitivity, and single-pixel count rate. We compare the datasets acquired with 4D-SCED using a fast HPD with those using state-of-the-art complementary metal-oxide-semiconductor (CMOS) cameras to map the in-plane orientation of π -stacking nano-crystallites of small molecule DRCN5T in a blend of DRCN5T: PC 71 BM after solvent vapor annealing. The high-speed CMOS camera, using a scintillator optimized for low doses, showed impressive results for electron sensitivity and low noise. However, the limited speed restricted practical experimental conditions and caused unintended damage to small and weak nano-crystallites. The fast HPD, with a speed three orders of magnitude higher, allows a much higher probe current yet a lower total dose on the sample, and more scan points cover a large field of view in less time. A lot more faint diffraction signals that correspond to just a few electron events are detected. The improved performance of direct electron detectors opens more possibilities to enhance the characterization of beam-sensitive materials using 4D-STEM techniques.