MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Sphere partition functions & cut-off AdS
Sphere partition functions & cut-off AdS
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Sphere partition functions & cut-off AdS
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Sphere partition functions & cut-off AdS
Sphere partition functions & cut-off AdS

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Sphere partition functions & cut-off AdS
Sphere partition functions & cut-off AdS
Journal Article

Sphere partition functions & cut-off AdS

2019
Request Book From Autostore and Choose the Collection Method
Overview
A bstract We consider sphere partition functions of TT deformed large N conformal field theories in d = 2, 3, 4, 5 and 6 dimensions, computed using the flow equation. These are shown to non-perturbatively match with bulk computations of AdS d +1 with a finite radial cut-off. We then demonstrate how the flow equation can be independently derived from a regularization procedure of defining TT operators through a local Callan-Symanzik equation. Finally, we show that the sphere partition functions, modulo bulk-counterterm contributions, can be reproduced from Wheeler-DeWitt wavefunctions.