MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals
Journal Article

Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals

2018
Request Book From Autostore and Choose the Collection Method
Overview
Mammals evolved in terrestrial environments. Those that now live in the marine environment have had to adapt to the particular selective pressures that this environment imposes. Meyer et al. surveyed the genomes of several marine mammal species to identify regions of convergent change. Multiple losses of the Paraoxonase 1 gene are evident in marine mammals, likely resulting from remodeling of lipid metabolism or antioxidant networks. The multiple occurrences of this loss of function across taxa indicate an evolutionary benefit. However, Paraoxonase 1 is the primary mammalian defense against organophosphorus toxicity. Marine mammals may be at a great disadvantage in the Anthropocene if run-off of this agricultural product into the marine environment continues. Science , this issue p. 591 Convergent loss of Paraoxonase 1 may leave marine mammals unable to metabolize organophosphates. Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 ( PON1 ) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species’ blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors’ lipid metabolism and/or bloodstream oxidative environment affecting PON1’s role in fatty acid oxidation. PON1 loss also eliminates marine mammals’ main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.