MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Thin‐Film‐Shaped Flexible Actuators
Thin‐Film‐Shaped Flexible Actuators
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Thin‐Film‐Shaped Flexible Actuators
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Thin‐Film‐Shaped Flexible Actuators
Thin‐Film‐Shaped Flexible Actuators

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Thin‐Film‐Shaped Flexible Actuators
Thin‐Film‐Shaped Flexible Actuators
Journal Article

Thin‐Film‐Shaped Flexible Actuators

2023
Request Book From Autostore and Choose the Collection Method
Overview
Human‐like and creature‐like systems are one of the most representative imaginary blueprints of future robots. To fulfill this blueprint, the development of high‐performance actuators across different length scales is indispensable. Owing to their mechanical compliance and conformability to curvy surfaces of living organisms, flexible actuators have emerged as an essential direction of next‐generation actuators. This review focuses on thin‐film‐shaped flexible actuators (TFFAs), a rising family of flexible actuators, aiming to provide an overview of the state‐of‐art status in this exciting direction. The designs, manufacturing, and mechanisms of various TFFAs are summarized, according to their key composing materials/mechanisms, including, for example, nanomaterials, liquid crystal elastomers, shape memory polymers/alloys, hydrogels, biohybrids, and other mechanisms/materials. The representative applications of TFFAs are introduced, ranging from biomedical uses, robots for environment explorations, to haptic interfaces and reconfigurable electronics. Finally, the grand challenges and open opportunities are discussed in detail. Owing to the outstanding mechanical compliance and conformability to curvy surfaces, thin‐film‐shaped flexible actuators (TFFAs) have emerged as a promising branch of next‐generation actuators. This review summarizes the designs, manufacturing, mechanisms, and applications of representative TFFAs, aiming to provide an overview of the state‐of‐art status in this young and exciting field.