Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Counting animals in orthomosaics from aerial imagery: Challenges and future directions
by
Torrico, Omar
, Valle, Denis
, Wilkinson, Benjamin
, Ferrara, Camila
, Forero‐Medina, German
, Wanovich, Kevin Thomas
, Brack, Ismael V.
, Domic‐Rivadeneira, Enrique
in
Abundance
/ abundance estimation
/ Animals
/ Data collection
/ detection errors
/ Drone aircraft
/ drones
/ Errors
/ Estimates
/ Flight
/ Modelling
/ photogrammetry
/ population monitoring
/ Reptiles & amphibians
/ Surveys
/ Wildlife
/ Wildlife surveys
2025
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Counting animals in orthomosaics from aerial imagery: Challenges and future directions
by
Torrico, Omar
, Valle, Denis
, Wilkinson, Benjamin
, Ferrara, Camila
, Forero‐Medina, German
, Wanovich, Kevin Thomas
, Brack, Ismael V.
, Domic‐Rivadeneira, Enrique
in
Abundance
/ abundance estimation
/ Animals
/ Data collection
/ detection errors
/ Drone aircraft
/ drones
/ Errors
/ Estimates
/ Flight
/ Modelling
/ photogrammetry
/ population monitoring
/ Reptiles & amphibians
/ Surveys
/ Wildlife
/ Wildlife surveys
2025
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Counting animals in orthomosaics from aerial imagery: Challenges and future directions
by
Torrico, Omar
, Valle, Denis
, Wilkinson, Benjamin
, Ferrara, Camila
, Forero‐Medina, German
, Wanovich, Kevin Thomas
, Brack, Ismael V.
, Domic‐Rivadeneira, Enrique
in
Abundance
/ abundance estimation
/ Animals
/ Data collection
/ detection errors
/ Drone aircraft
/ drones
/ Errors
/ Estimates
/ Flight
/ Modelling
/ photogrammetry
/ population monitoring
/ Reptiles & amphibians
/ Surveys
/ Wildlife
/ Wildlife surveys
2025
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Counting animals in orthomosaics from aerial imagery: Challenges and future directions
Journal Article
Counting animals in orthomosaics from aerial imagery: Challenges and future directions
2025
Request Book From Autostore
and Choose the Collection Method
Overview
The use of drones to survey and monitor wildlife populations has increased exponentially. A common protocol used for data collection is planning flights with substantial overlap between successive photographs and lateral lines and then creating orthomosaics by merging the collected images. Because available methods for orthomosaic building assume that landscapes are static, unintended errors arise when counting moving animals. Here, we describe these sources of error and discuss potential solutions and future developments needed. Individuals can appear multiple times, be omitted or appear as faint ghosts or cut in half in the final mosaic. These errors can significantly impact abundance estimates but are rarely acknowledged. Researchers should carefully consider if using orthomosaics is really needed for surveying wildlife. Currently, there is a lack of methods to prevent these errors from arising and to explicitly accommodate them in modelling approaches. Future developments should focus on (a) creating methods to build orthomosaics that minimize these errors in the context of counting moving animals; (b) developing modelling approaches to estimate abundance while accounting for these errors; and (c) exploring alternative flight settings (e.g. amount of lateral overlap, sensor type, flight height and speed). Using an example on Giant Amazon Turtles, we illustrate potential solutions with a method for orthomosaic building that prioritizes moving animals and a modelling approach to estimate the detection errors and correct abundance estimates. The developed prototype approach for creating orthomosaics revealed many more turtle individuals than the conventional approach, although it presented more double counts as well. In the modelling approach, we found that a turtle available for detection during the survey can have a probability of 31% of being omitted or ghosted during the conventional orthomosaic building process. We also found that 12% of the turtles appearing in a conventional orthomosaic correspond to double counts. Resumo O uso de drones para amostrar e monitorar animais silvestres tem crescido exponencialmente. Um protocolo comumente usado para a coleta de dados é planejar os voos com uma considerável sobreposição entre fotos sequenciais e linhas laterais e então criar um ortomosaico através da junção de todas as imagens coletadas. Como os métodos disponíveis para a construção de ortomosaicos consideram que as paisagens são estáticas, erros inesperados surgem durante a contagem de animais em movimento. Aqui, nós descrevemos essas fontes de erro e discutimos potenciais soluções e desenvolvimentos futuros que são necessários. Indivíduos podem aparecer múltiplas vezes, serem omitidos ou aparecerem transparentes ou cortados no mosaico final. Esses erros podem afetar significativamente as estimativas de abundância, mas são raramente reconhecidos na literatura. Os pesquisadores devem considerar cuidadosamente se usar ortomosaicos é realmente necessário para amostrar animais silvestres. Atualmente, há uma lacuna de métodos para prevenir que esses erros ocorram e para explicitamente acomodar eles em abordagens de modelagem. Desenvolvimentos futuros devem focar em: (1) explorar configurações alternativas de voo (e.g., grau de sobreposição lateral, tipo de sensor, altura e velocidade de voo, etc.); (2) criar métodos para construção desses mosaicos que minimizem os erros no contexto de contagem de animais em movimento; e (3) desenvolver abordagens de modelagem para estimar abundância que levem em conta esses erros. Usando um exemplo com tartarugas‐da‐amazônia, nós ilustramos as soluções potenciais com um método para construção de ortomosaicos que prioriza animais em movimento e uma abordagem de modelagem para estimar os erros de detecção e corrigir as estimativas de abundância. O protótipo da abordagem desenvolvida para criar ortomosaicos revelou muito mais tartarugas do que a abordagem convencional, embora também tenha apresentado mais contagens duplas. Na abordagem de modelagem, nós encontramos que uma tartaruga disponível para detecção durante a amostragem tem uma probabilidade de 31% de ser omitida ou aparecer transparente durante o processo convencional de montagem do mosaico. Também encontramos que 12% das tartarugas que aparecem em um ortomosaico convencional correspondem a contagens duplas.
Publisher
John Wiley & Sons, Inc,Wiley
Subject
This website uses cookies to ensure you get the best experience on our website.