Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A review on multi-class TWSVM
by
Zhang, Xiekai
, Zhao, Xingyu
, Ding, Shifei
, Zhang, Jian
, Yu, Xue
in
Algorithms
/ Classification
/ Groups
/ Machine learning
/ Machinery
/ Novels
/ Novices
/ Strategies
/ Strategy
/ Support vector machines
/ Training
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A review on multi-class TWSVM
by
Zhang, Xiekai
, Zhao, Xingyu
, Ding, Shifei
, Zhang, Jian
, Yu, Xue
in
Algorithms
/ Classification
/ Groups
/ Machine learning
/ Machinery
/ Novels
/ Novices
/ Strategies
/ Strategy
/ Support vector machines
/ Training
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
A review on multi-class TWSVM
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Twin support vector machines (TWSVM), a novel machine learning algorithm developing from traditional support vector machines (SVM), is one of the typical nonparallel support vector machines. Since the TWSVM has superiorities of the simple model, the high training speed and the good performance, it has drawn extensive attention. The initial TWSVM can only handle binary classification, however, the multi-class classification problems are also common in practice. How to extend TWSVM from binary classification to multi-class classification is an interesting issue. Many researchers have devoted to the study of multi-class TWSVM. Although the study of multi-class TWSVM has made great progress, there is little literature on the comparisons and summaries of different multi-class classifiers based on TWSVM, which not only makes it difficult for novices to understand the essential differences, but also leads to the problem that how to choose the suitable multi-class TWSVM for a practical multi-class classification problem. This paper aims to review the development of multi-class TWSVM in recent years. We group multi-classTWSVM reasonably and analyze them with the respect to the basic theories and geometric meaning. According to the structures of the multi-class TWSVM, we divide them to the following groups: “one-versus-rest” strategy based multi-classTWSVM, “one-versus-one” strategy based multi-class TWSVM, binary tree structure based multi-class TWSVM, “one-versus-one-versus-rest” strategy based multi-class TWSVM and “all-versus-one” strategy based multi-class TWSVM. Although the training processes of direct acyclic graph based multi-class TWSVM are much similar to that of “one-versus-one” multi-class TWSVM, the decision processes of direct acyclic graph based multi-class TWSVM have their own characteristics and disadvantages, so we divide them to a separate group. This paper analyzes and summarizes the basic thoughts, theories, applicability and complexities of different multi-class TWSVM of different groups and presents experimental results to compare the performances.
This website uses cookies to ensure you get the best experience on our website.