MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Prediction in Functional Linear Regression
Prediction in Functional Linear Regression
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Prediction in Functional Linear Regression
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Prediction in Functional Linear Regression
Prediction in Functional Linear Regression

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Prediction in Functional Linear Regression
Prediction in Functional Linear Regression
Journal Article

Prediction in Functional Linear Regression

2006
Request Book From Autostore and Choose the Collection Method
Overview
There has been substantial recent work on methods for estimating the slope function in linear regression for functional data analysis. However, as in the case of more conventional finite-dimensional regression, much of the practical interest in the slope centers on its application for the purpose of prediction, rather than on its significance in its own right. We show that the problems of slope-function estimation, and of prediction from an estimator of the slope function, have very different characteristics. While the former is intrinsically nonparametric, the latter can be either nonparametric or semi-parametric. In particular, the optimal mean-square convergence rate of predictors is n⁻¹, where n denotes sample size, if the predictand is a sufficiently smooth function. In other cases, convergence occurs at a polynomial rate that is strictly slower than n⁻¹. At the boundary between these two regimes, the mean-square convergence rate is less than n⁻¹ by only a logarithmic factor. More generally, the rate of convergence of the predicted value of the mean response in the regression model, given a particular value of the explanatory variable, is determined by a subtle interaction among the smoothness of the predictand, of the slope function in the model, and of the autocovariance function for the distribution of explanatory variables.

MBRLCatalogueRelatedBooks