MbrlCatalogueTitleDetail

Do you wish to reserve the book?
I-LAMM FOR SPARSE LEARNING
I-LAMM FOR SPARSE LEARNING
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
I-LAMM FOR SPARSE LEARNING
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
I-LAMM FOR SPARSE LEARNING
I-LAMM FOR SPARSE LEARNING

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
I-LAMM FOR SPARSE LEARNING
Journal Article

I-LAMM FOR SPARSE LEARNING

2018
Request Book From Autostore and Choose the Collection Method
Overview
We propose a computational framework named iterative local adaptive majorize-minimization (I-LAMM) to simultaneously control algorithmic complexity and statistical error when fitting high-dimensional models. I-LAMM is a two-stage algorithmic implementation of the local linear approximation to a family of folded concave penalized quasi-likelihood. The first stage solves a convex program with a crude precision tolerance to obtain a coarse initial estimator, which is further refined in the second stage by iteratively solving a sequence of convex programs with smaller precision tolerances. Theoretically, we establish a phase transition: the first stage has a sublinear iteration complexity, while the second stage achieves an improved linear rate of convergence. Though this framework is completely algorithmic, it provides solutions with optimal statistical performances and controlled algorithmic complexity for a large family of nonconvex optimization problems. The iteration effects on statistical errors are clearly demonstrated via a contraction property. Our theory relies on a localized version of the sparse/restricted eigenvalue condition, which allows us to analyze a large family of loss and penalty functions and provide optimality guarantees under very weak assumptions (e.g., I-LAMM requires much weaker minimal signal strength than other procedures). Thorough numerical results are provided to support the obtained theory.