MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation
Journal Article

Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation

2021
Request Book From Autostore and Choose the Collection Method
Overview
The COVID-19 pandemic is probably the greatest health catastrophe of the modern era. Spain's health care system has been exposed to uncontrollable numbers of patients over a short period, causing the system to collapse. Given that diagnosis is not immediate, and there is no effective treatment for COVID-19, other tools have had to be developed to identify patients at the risk of severe disease complications and thus optimize material and human resources in health care. There are no tools to identify patients who have a worse prognosis than others. This study aimed to process a sample of electronic health records of patients with COVID-19 in order to develop a machine learning model to predict the severity of infection and mortality from among clinical laboratory parameters. Early patient classification can help optimize material and human resources, and analysis of the most important features of the model could provide more detailed insights into the disease. After an initial performance evaluation based on a comparison with several other well-known methods, the extreme gradient boosting algorithm was selected as the predictive method for this study. In addition, Shapley Additive Explanations was used to analyze the importance of the features of the resulting model. After data preprocessing, 1823 confirmed patients with COVID-19 and 32 predictor features were selected. On bootstrap validation, the extreme gradient boosting classifier yielded a value of 0.97 (95% CI 0.96-0.98) for the area under the receiver operator characteristic curve, 0.86 (95% CI 0.80-0.91) for the area under the precision-recall curve, 0.94 (95% CI 0.92-0.95) for accuracy, 0.77 (95% CI 0.72-0.83) for the F-score, 0.93 (95% CI 0.89-0.98) for sensitivity, and 0.91 (95% CI 0.86-0.96) for specificity. The 4 most relevant features for model prediction were lactate dehydrogenase activity, C-reactive protein levels, neutrophil counts, and urea levels. Our predictive model yielded excellent results in the differentiating among patients who died of COVID-19, primarily from among laboratory parameter values. Analysis of the resulting model identified a set of features with the most significant impact on the prediction, thus relating them to a higher risk of mortality.