MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems
Journal Article

Experimental and Numerical Study of the Thermal Properties of Dry Green Swales to Be Used as Part of Geothermal Energy Systems

2023
Request Book From Autostore and Choose the Collection Method
Overview
Low-enthalpy geothermal systems are a promising source for renewable and clean energy for heating, cooling, and air conditioning residential buildings, contributing to the reduction in greenhouse gas emissions in line with the United Nations’ Sustainable Development Goals. Previous research emerged around the geothermal utilization of Sustainable Drainage Systems (SuDS) as multifunctional surfaces for stormwater control and energy saving, developing the water–energy nexus. However, these studies did not comprehensively considered the energy aspects for SuDS design, using non-standardized tests to measure the main thermal parameters. This research aims to address this gap by proposing a novel hybrid engineering procedure to study the thermal properties of SuDS layers and materials through experimental tests combined with steady-state and transient numerical simulations, using green swales operating under dry and wet conditions as a first case study for SuDS techniques. Novel materials incorporated into dry swales (expanded clay and construction and demolition waste) were tested. The results validated this new methodology, reporting an increase of 87% under dry conditions, and 51% under wet scenarios in the thermal insulation performance in comparison to standard materials. A better thermal performance of the systems can be achieved by approaching SuDS design from a holistic viewpoint that integrates energy aspects.