MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis
Journal Article

Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis

2023
Request Book From Autostore and Choose the Collection Method
Overview
B chromosomes are non-essential, extra chromosomes that can exhibit transmission-enhancing behaviors, including meiotic drive, mitotic drive, and induction of genome elimination, in plants and animals. A fundamental but poorly understood question is what characteristics allow B chromosomes to exhibit these extraordinary behaviors. The jewel wasp, Nasonia vitripennis, harbors a heterochromatic, paternally transmitted B chromosome known as paternal sex ratio (PSR), which causes complete elimination of the sperm-contributed half of the genome during the first mitotic division of fertilized embryos. This genome elimination event may result from specific, previously observed alterations of the paternal chromatin. Due to the haplo-diploid reproduction of the wasp, genome elimination by PSR causes female-destined embryos to develop as haploid males that transmit PSR. PSR does not undergo self-elimination despite its presence with the paternal chromatin until the elimination event. Here we performed fluorescence microscopic analyses aimed at understanding this unexplained property. Our results show that PSR, like the rest of the genome, participates in the histone-to-protamine transition, arguing that PSR does not avoid this transition to escape self-elimination. In addition, PSR partially escapes the chromatin-altering activity of the intracellular bacterium, Wolbachia, demonstrating that this ability to evade chromatin alteration is not limited to PSR’s own activity. Finally, we observed that the rDNA locus and other unidentified heterochromatic regions of the wasp’s genome also seem to evade chromatin disruption by PSR, suggesting that PSR’s genome-eliminating activity does not affect heterochromatin. Thus, PSR may target an aspect of euchromatin to cause genome elimination.