MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers
Journal Article

The Kinematic and Microphysical Characteristics of Extremely Heavy Rainfall in Zhengzhou City on 20 July 2021 Observed with Dual-Polarization Radars and Disdrometers

2023
Request Book From Autostore and Choose the Collection Method
Overview
In this study, we utilized dual-polarization weather radar and disdrometer data to investigate the kinematic and microphysical characteristics of an extreme heavy rainfall event that occurred on 20 July 2021, in Zhengzhou. The results are as follows: FY-2G satellite images showed that extremely heavy rainfall mainly occurred during the merging period of medium- and small-scale convective cloud clusters. The merging of these cloud clusters enhanced the rainfall intensity. The refined three-dimensional wind field, as retrieved by the multi-Doppler radar, revealed a prominent mesoscale vortex and convergence structure at the extreme rainfall stage. This led to echo stagnation, resulting in localized extreme heavy rainfall. We explored the formation mechanism of the notable ZDR arc feature of dual-polarization variables during this phase. It was revealed that during the record-breaking hourly rainfall event in Zhengzhou (20 July 2021, 16:00–17:00 Beijing Time), the warm rain process dominated. Effective collision–coalescence processes, producing a high concentration of medium- to large-sized raindrops, significantly contributed to heavy rainfall at the surface. From an observational perspective, it was revealed that raindrops exhibited significant collision interactions during their descent. Moreover, a conceptual model for the kinematic and microphysical characteristics of this extreme rainfall event was established, aiming to provide technical support for monitoring and early warning of similar extreme rainfall events.