MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Fast IAA–Based SR–STAP Method for Airborne Radar
A Fast IAA–Based SR–STAP Method for Airborne Radar
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Fast IAA–Based SR–STAP Method for Airborne Radar
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Fast IAA–Based SR–STAP Method for Airborne Radar
A Fast IAA–Based SR–STAP Method for Airborne Radar

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Fast IAA–Based SR–STAP Method for Airborne Radar
A Fast IAA–Based SR–STAP Method for Airborne Radar
Journal Article

A Fast IAA–Based SR–STAP Method for Airborne Radar

2024
Request Book From Autostore and Choose the Collection Method
Overview
Space–time adaptive processing (STAP) is an effective technology in clutter suppression and moving target detection for airborne radar. When working in the heterogeneous environment, the number of training samples that satisfy independent and identically distributed (IID) conditions is insufficient, making it difficult to ensure the estimation accuracy of the clutter plus noise covariance matrix for traditional STAP methods. Sparse recovery–based STAP (SR–STAP) methods have received widespread attention in the past few years. The accurate estimation of the clutter plus noise covariance matrix can be achieved using only a few training samples. The iterative adaptive approach (IAA) can quickly and accurately estimate the power spectrum, but applying this method directly to the STAP method cannot produce good performance. In this paper, a fast IAA–based SR–STAP method is proposed. Based on the weighted l1 problem, the IAA spectrum is used as a weighted term to obtain a good approximation. In order to obtain an analytical solution, we use the weighted l2 norm to approximate the weighted l1 norm without loss of performance. Compared with the IAA–STAP method, the proposed method is more robust to errors. Moreover, the proposed method has a fast computational speed. The effectiveness of the proposed method is demonstrated by simulations.