MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate
Journal Article

Performance Evaluation of Shotcrete Mortar with Silicon Manganese Slag as Substitute for Fine Aggregate

2025
Request Book From Autostore and Choose the Collection Method
Overview
Shotcrete is a versatile construction material, yet its performance limitations, such as high rebound rates and poor adhesion, demand technological improvements to ensure structural reliability. Silicon manganese (SiMn) slag, a by-product of SiMn alloy production, has gained attention as a potential sustainable alternative to natural aggregates in construction materials, addressing both resource depletion and carbon reduction challenges in the industry. This study is conducted to develop and evaluate a new mix design of mortar incorporating SiMn slag as fine aggregate, focusing on enhancing performance. Mixtures with varying percentages (0%, 30%, 50%, 70%, and 100%) of SiMn slag as a fine aggregate replacement were evaluated for fresh properties (air content, slump), mechanical performance (compressive strength, flexural strength, splitting tensile strength), durability (chloride ion penetration resistance, freeze–thaw resistance, carbonation resistance), and constructability (rebound rate, free shrinkage) to assess suitability as mortar for shotcrete. The experimental results demonstrated that the mixture with 50% SiMn slag replacement demonstrated the most balanced performance, showing an increase of 12.33% in compressive strength, 8.97% in splitting tensile strength, and 18.4% in flexural strength compared to the control. Durability properties also improved by an average of 11.93%, while rebound rate and shrinkage were significantly reduced. The findings confirm that SiMn slag is a technically viable and advantageous substitute for fine aggregates in shotcrete. Further research is needed to refine its economic feasibility and broaden its implementation in sustainable construction.