MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments
Journal Article

Target Localization Method Based on Image Degradation Suppression and Multi-Similarity Fusion in Low-Illumination Environments

2023
Request Book From Autostore and Choose the Collection Method
Overview
Frame buildings as important nodes of urban space. The include high-speed railway stations, airports, residences, and office buildings, which carry various activities and functions. Due to illumination irrationality and mutual occlusion between complex objects, low illumination situations frequently develop in these architectural environments. In this case, the location information of the target is difficult to determine. At the same time, the change in the indoor electromagnetic environment also affects the location information of the target. Therefore, this paper adopts the vision method to achieve target localization in low-illumination environments by feature matching of images collected in the offline state. However, the acquired images have serious quality degradation problems in low-illumination conditions, such as low brightness, low contrast, color distortion, and noise interference. These problems mean that the local features in the collected images are missing, meaning that they fail to achieve a match with the offline database images; as a result, the location information of the target cannot be determined. Therefore, a Visual Localization with Multiple-Similarity Fusions (VLMSF) is proposed based on the Nonlinear Enhancement And Local Mean Filtering (NEALMF) preprocessing enhancement. The NEALMF method solves the problem of missing local features by improving the quality of the acquired images, thus improving the robustness of the visual positioning system. The VLMSF method solves the problem of low matching accuracy in similarity retrieval methods by effectively extracting and matching feature information. Experiments show that the average localization error of the VLMSF method is only 8 cm, which is 33.33% lower than that of the Kears-based VGG-16 similarity retrieval method. Meanwhile, the localization error is reduced by 75.76% compared with the Perceptual hash (Phash) retrieval method. The results show that the method proposed in this paper greatly alleviates the influence of low illumination on visual methods, thus helping city managers accurately grasp the location information of targets under complex illumination conditions.