MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods
Journal Article

Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods

2024
Request Book From Autostore and Choose the Collection Method
Overview
The application of steel strut force servo systems in deep excavation engineering is not widespread, and there is a notable scarcity of in-situ measured datasets. This presents a significant research gap in the field. Addressing this, our study introduces a valuable dataset and application scenarios, serving as a reference point for future research. The main objective of this study is to use machine learning (ML) methods for accurately predicting strut forces in steel supporting structures, a crucial aspect for the safety and stability of deep excavation projects. We employed five different ML methods: radial basis function neural network (RBFNN), back propagation neural network (BPNN), K-Nearest Neighbor (KNN), support vector machine (SVM), and random forest (RF), utilizing a dataset of 2208 measured points. These points included one output parameter (strut forces) and seven input parameters (vertical position of strut, plane position of strut, time, temperature, unit weight, cohesion, and internal frictional angle). The effectiveness of these methods was assessed using root mean square error (RMSE), correlation coefficient (R), and mean absolute error (MAE). Our findings indicate that the BPNN method outperforms others, with RMSE, R, and MAE values of 72.1 kN, 0.9931, and 57.4 kN, respectively, on the testing dataset. This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering, contributing to enhanced safety measures and project planning.