MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses
Journal Article

Putting μ/g in a new light: plasticity in life history switch points reflects fine‐scale adaptive responses

2015
Request Book From Autostore and Choose the Collection Method
Overview
Life history theory predicts that organisms with complex life cycles should transition between life stages when the ratio of growth rate (g) to risk of mortality (μ) in the current stage falls below that in the subsequent stage. Empirical support for this idea has been mixed. Implicit in both theory and empirical work is that the risk of mortality in the subsequent stage is unknown. However, some embryos and larvae of both vertebrates and invertebrates assess cues of post‐transition predation risk and alter the timing of hatching or metamorphosis accordingly. Furthermore, although life history switch points of prey have traditionally been treated as discrete shifts in morphology or habitat, for many organisms they are continuous transitional periods within which the timing of specific developmental and behavioral events can be plastic. We studied red‐eyed treefrogs (Agalychnis callidryas), which detect predators of both larvae and metamorphs, to test if plastic changes during the process of metamorphosis could reconcile the mismatch between life history theory and empirical data and if plasticity in an earlier stage transition (hatching) would affect plasticity at a subsequent stage transition (metamorphosis). We reared tadpoles from hatching until metamorphosis in a full‐factorial cross of two hatching ages (early‐ vs. late‐hatched) and the presence or absence of free‐roaming predators of larvae (giant water bugs) and metamorphs (fishing spiders). Hatching age affected the times from oviposition to tail resorption and from hatching to emergence onto land, but did not alter responses to predators or developmental stage at emergence. Tadpoles did not alter their age at emergence or tail resorption in response to larval or metamorph predators, despite the fact that predators reduced tadpole density by ~30%. However, developmental stage at emergence and time needed to complete metamorphosis in the terrestrial environment were plastic and consistent with predictions of the “minimize μ/g” framework. Our results demonstrate that likely adaptive changes in life history transitions occur at previously unappreciated timescales. Consideration of plasticity in the developmental timing of ecologically important events within metamorphosis, rather than treating it as a discrete switch point, may help to reconcile inconsistencies between empirical studies of predator effects and expectations of long‐standing ecological theory.