MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess
Journal Article

Synergistic Effects of Microbial-Induced Carbonate Precipitation and Modified Biochar on the Engineering Properties of Loess

2025
Request Book From Autostore and Choose the Collection Method
Overview
Collapsible loess poses significant geotechnical risks due to its metastable structure and water sensitivity, while conventional stabilization methods often lack sustainability. This study investigates the synergistic effects of microbial-induced carbonate precipitation (MICP) and modified biochar (MBC) to enhance loess engineering properties. Controlled experiments evaluated hydraulic conductivity, shear strength, and stress-strress–strain behavior under varying MBC content (0–8%), cementation reagent concentration (0.5–1.5 mol/L), and confining pressures (50–400 kPa), and complemented by microstructural characterization via scanning electron microscope (SEM). Results demonstrate that MBC (4–6%) optimizes calcium carbonate distribution by providing nucleation sites, reducing hydraulic conductivity by 72% and increasing shear strength by 52% when compared with untreated loess. Elevated confining pressures (200–400 kPa) transformed brittle failure into ductile behavior through particle interlocking, with peak strength quadrupling under 400 kPa. SEM analysis revealed MBC stabilizes hierarchical pore networks: macropores sustain microbial activity, while mesopores are occluded by CaCO3-MBC composites, sequestering ionic byproducts to mitigate efflorescence. The optimal combination (6% MBC, 1.0 mol/L reagent, 200 kPa confinement) achieved 85% of maximum strength gain at reduced reagent cost, balancing performance and sustainability.