MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Deep convolutional neural network-based signal quality assessment for photoplethysmogram

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Deep convolutional neural network-based signal quality assessment for photoplethysmogram
Journal Article

Deep convolutional neural network-based signal quality assessment for photoplethysmogram

2022
Request Book From Autostore and Choose the Collection Method
Overview
Quality assessment of bio-signals is important to prevent clinical misdiagnosis. With the introduction of mobile and wearable health care, it is becoming increasingly important to distinguish available signals from noise. The goal of this study was to develop a signal quality assessment technology for photoplethysmogram (PPG) widely used in wearable healthcare. In this study, we developed and verified a deep neural network (DNN)-based signal quality assessment model using about 1.6 million 5-s segment length PPG big data of about 29 GB from the MIMIC III PPG waveform database. The DNN model was implemented through a 1D convolutional neural network (CNN). The number of CNN layers, number of fully connected nodes, dropout rate, batch size, and learning rate of the model were optimized through Bayesian optimization. As a result, 6 CNN layers, 1,546 fully connected layer nodes, 825 batch size, 0.2 dropout rate, and 0.002 learning rate were needed for an optimal model. Performance metrics of the result of classifying waveform quality into ‘Good’ and ‘Bad’, the accuracy, specificity, sensitivity, area under the receiver operating curve, and area under the precision–recall curve were 0.978, 0.948, 0.993, 0.985, 0.980, and 0.969, respectively. Additionally, in the case of simulated real-time application, it was confirmed that the proposed signal quality score tracked the decrease in pulse quality well. •Signal quality assessment using raw photoplethysmogram without pre-processing.•Deep learning-based photoplethysmogram quality assessment.•Validation using 30 times or more of big data compared to existing studies.•Secured high performance (0.98 of area under curve) with high reliability.