MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain
Journal Article

Astrocyte Fabp7 modulates nocturnal seizure threshold and activity-dependent gene expression in mouse brain

2025
Request Book From Autostore and Choose the Collection Method
Overview
Epileptic seizures often track with time of day and/or changes in vigilance state; however, specific molecular and cellular mechanisms driving the ictal and temporal associations are lacking. Astrocytes are a type of glial cell known to modulate neuronal excitability and circadian rhythms. These cells also abundantly express fatty acid–binding protein 7 (Fabp7), a clock-driven molecule necessary for normal sleep regulation, lipid signaling, and gene transcription. To determine whether Fabp7 influences time-of-day-dependent seizure susceptibility, we tested male C57/BL6N wild-type (WT) and Fabp7 knockout (KO) mice using electroshock seizure threshold. Compared with WT mice, Fabp7 KO mice exhibited markedly higher general- and maximal-electroshock seizure thresholds (GESTs and MESTs, respectively) during the dark phase, but not the light phase. We used RNA-seq to determine the role of Fabp7 in activity-dependent gene expression in nocturnal seizures and compared genome-wide mRNA expression in cortical/hippocampal tissue collected from WT-MEST and Fabp7 KO-MEST mice with WT-SHAM and Fabp7 KO-SHAM mice during the dark period. Whereas significant differential expression of immediate early genes was observed in WT-MEST compared with WT-SHAM, this effect was blocked in the Fabp7 KO-MEST versus Fabp7 KO-SHAM. Gene ontology and pathway analysis of all groups revealed significant overlap between WT-MEST:WT-SHAM and Fabp7 KO-SHAM:WT-SHAM comparisons, suggesting basal mRNA levels of core molecular and cellular mechanisms in the brain of Fabp7 KO approximate postictal WT brain. Together, these data suggest that Fabp7 regulates time-of-day-dependent neural excitability and that neural activity likely interacts with astrocyte Fabp7-mediated signaling cascades to influence activity-dependent gene expression.