MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring
Journal Article

Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring

2021
Request Book From Autostore and Choose the Collection Method
Overview
Real-time monitoring on displacement and acceleration of a structure provides vital information for people in different applications such as active control and damage warning systems. Recent developments of the Internet of Things (IoT) and client-side web technologies enable a wireless microcontroller board with sensors to process structural-related data in real-time and to interact with servers so that end-users can view the final processed results of the servers through a browser in a computer or a mobile phone. Unlike traditional structural health monitoring (SHM) systems that deliver warnings based on peak acceleration of earthquake, we built a real-time SHM system that converts raw sensor results into movements and rotations on the monitored structure’s three-dimensional (3D) model. This unique approach displays the overall structural dynamic movements directly from measured displacement data, rather than using force analysis, such as finite element analysis, to predict the displacement statically. As an application to our research outcomes, patterns of movements related to its structure type can be collected for further cross-validating the results derived from the traditional stress-strain analysis. In this work, we overcome several challenges that exist in displaying the 3D effects in real-time. From our proposed algorithm that converts the global displacements into element’s local movements, our system can calculate each element’s (e.g., column’s, beam’s, and floor’s) rotation and displacement at its local coordinate while the sensor’s monitoring result only provides displacements at the global coordinate. While we consider minimizing the overall sensor usage costs and displaying the essential 3D movements at the same time, a sensor deployment method is suggested. To achieve the need of processing the enormous amount of sensor data in real-time, we designed a novel structure for saving sensor data, where relationships among multiple sensor devices and sensor’s spatial and unique identifier can be presented. Moreover, we built a sensor device that can send the monitoring data via wireless network to the local server or cloud so that the SHM web can integrate what we develop altogether to show the real-time 3D movements. In this paper, a 3D model is created according to a two-story structure to demonstrate the SHM system functionality and validate our proposed algorithm.