Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
List Decoding of Arıkan’s PAC Codes
by
Vardy, Alexander
, Fazeli, Arman
, Yao, Hanwen
in
Approximation
/ Codes
/ Coding
/ coding theory
/ Convolutional codes
/ Decoding
/ list decoding
/ Performance enhancement
/ polar codes
/ sequential decoding
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
List Decoding of Arıkan’s PAC Codes
by
Vardy, Alexander
, Fazeli, Arman
, Yao, Hanwen
in
Approximation
/ Codes
/ Coding
/ coding theory
/ Convolutional codes
/ Decoding
/ list decoding
/ Performance enhancement
/ polar codes
/ sequential decoding
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
List Decoding of Arıkan’s PAC Codes
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Polar coding gives rise to the first explicit family of codes that provably achieve capacity with efficient encoding and decoding for a wide range of channels. However, its performance at short blocklengths under standard successive cancellation decoding is far from optimal. A well-known way to improve the performance of polar codes at short blocklengths is CRC precoding followed by successive-cancellation list decoding. This approach, along with various refinements thereof, has largely remained the state of the art in polar coding since it was introduced in 2011. Recently, Arıkan presented a new polar coding scheme, which he called polarization-adjusted convolutional (PAC) codes. At short blocklengths, such codes offer a dramatic improvement in performance as compared to CRC-aided list decoding of conventional polar codes. PAC codes are based primarily upon the following main ideas: replacing CRC codes with convolutional precoding (under appropriate rate profiling) and replacing list decoding by sequential decoding. One of our primary goals in this paper is to answer the following question: is sequential decoding essential for the superior performance of PAC codes? We show that similar performance can be achieved using list decoding when the list size L is moderately large (say, L⩾128). List decoding has distinct advantages over sequential decoding in certain scenarios, such as low-SNR regimes or situations where the worst-case complexity/latency is the primary constraint. Another objective is to provide some insights into the remarkable performance of PAC codes. We first observe that both sequential decoding and list decoding of PAC codes closely match ML decoding thereof. We then estimate the number of low weight codewords in PAC codes, and use these estimates to approximate the union bound on their performance. These results indicate that PAC codes are superior to both polar codes and Reed–Muller codes. We also consider random time-varying convolutional precoding for PAC codes, and observe that this scheme achieves the same superior performance with constraint length as low as ν=2.
Publisher
MDPI AG,MDPI
Subject
This website uses cookies to ensure you get the best experience on our website.