MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function
Journal Article

Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function

2021
Request Book From Autostore and Choose the Collection Method
Overview
Model Predictive Control (MPC) algorithms typically use the classical L2 cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L1 norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L1 norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L1 norm even gives better performance than the classical L2 one in terms of the classical control performance indicator that measures squared control errors.