MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
Journal Article

Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting

2025
Request Book From Autostore and Choose the Collection Method
Overview
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining holes on ceramic surfaces remains a significant barrier to applying this lubrication technique to ceramics. Gel casting, as a near-net-shaping process, offers several advantages, including uniform green body density, low organic content, and the capability to fabricate components with complex geometries, making it a promising solution for addressing these challenges. In this study, alumina ceramics with small surface holes designed for embedding oil-containing microcapsules were fabricated via gel casting using an N-hydroxy methylacrylamide gel system, which demonstrates lower toxicity compared to conventional acrylamide systems. The fabricated alumina ceramic materials exhibited a high density of 98.2%, a hardness of 16 GPa, and a bending strength of 276 MPa. The oil-containing microcapsules were self-synthesized using hexafluorophosphate ionic liquid as the core material and polyurea-formaldehyde as the wall material. The research results show that under conditions of using an alumina ball, sliding speed of 10 cm/min, load of 5 N, and at room temperature, the material with a microcapsule content of 15 wt% and embedded hole diameter of 1.2 mm reduced the friction coefficient from 0.696 in an unlubricated condition to 0.317. Moreover, the embedding of microcapsules further improved the wear resistance of the alumina.

MBRLCatalogueRelatedBooks