MbrlCatalogueTitleDetail

Do you wish to reserve the book?
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem
Journal Article

As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem

2021
Request Book From Autostore and Choose the Collection Method
Overview
All known algorithms to solve nondeterministic polynomial (NP) complete problems, relevant to many real-life applications, require the exploration of a space of potential solutions, which grows exponentially with the size of the problem. Since electronic computers can implement only limited parallelism, their use for solving NP-complete problems is impractical for very large instances, and consequently alternative massively parallel computing approaches were proposed to address this challenge. We present a scaling analysis of two such alternative computing approaches, DNA computing (DNA-C) and network biocomputing with agents (NB-C), compared with electronic computing (E-C). The Subset Sum Problem (SSP), a known NP-complete problem, was used as a computational benchmark, to compare the volume, the computing time, and the energy required for each type of computation, relative to the input size. Our analysis shows that the sequentiality of E-C translates in a very small volume compared to that required by DNA-C and NB-C, at the cost of the E-C computing time being outperformed first by DNA-C (linear run time), followed by NB-C. Finally, NB-C appears to be more energy-efficient than DNA-C for some types of input sets, while being less energy-efficient for others, with E-C being always an order of magnitude less energy efficient than DNA-C. This scaling study suggest that presently none of these computing approaches win, even theoretically, for all three key performance criteria, and that all require breakthroughs to overcome their limitations, with potential solutions including hybrid computing approaches.