MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network
Journal Article

Multispectral Quantitative Phase Imaging Using a Diffractive Optical Network

2023
Request Book From Autostore and Choose the Collection Method
Overview
As a label‐free imaging technique, quantitative phase imaging (QPI) provides optical path length information of transparent specimens for various applications in biology, materials science, and engineering. Multispectral QPI measures quantitative phase information across multiple spectral bands, permitting the examination of wavelength‐specific phase and dispersion characteristics of samples. Herein, the design of a diffractive processor is presented that can all‐optically perform multispectral quantitative phase imaging of transparent phase‐only objects within a snapshot. The design utilizes spatially engineered diffractive layers, optimized through deep learning, to encode the phase profile of the input object at a predetermined set of wavelengths into spatial intensity variations at the output plane, allowing multispectral QPI using a monochrome focal plane array. Through numerical simulations, diffractive multispectral processors are demonstrated to simultaneously perform quantitative phase imaging at 9 and 16 target spectral bands in the visible spectrum. The generalization of these diffractive processor designs is validated through numerical tests on unseen objects, including thin Pap smear images. Due to its all‐optical processing capability using passive dielectric diffractive materials, this diffractive multispectral QPI processor offers a compact and power‐efficient solution for high‐throughput quantitative phase microscopy and spectroscopy. Leveraging deep learning‐designed diffractive layers, an all‐optical diffractive processor can rapidly obtain multispectral quantitative phase images (QPI) of transparent objects by transforming their phase profiles at target spectral bands into spatial intensity variations measured by a monochrome image sensor. This compact diffractive QPI framework can work at different parts of the spectrum through integration with various image sensors.