MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation
Journal Article

Reactive responses of the arms increase the Margins of Stability and decrease center of mass dynamics during a slip perturbation

2023
Request Book From Autostore and Choose the Collection Method
Overview
Although reactive arm motions are important in recovering from a slip event, the biomechanical influences of upper extremity motions during slipping are not clear. The purpose of the current study was to determine whether reactive arm motions during slip recovery leads to increased margins of stability (MoS), and decreased center of mass (CoM) velocity and excursion. Thirty-two participants were randomized into 2 conditions: arms free and arms constrained. Participants traversed a 10-meter walkway and were exposed to an unexpected slip while wearing a protective harness. Anterior-posterior and medial–lateral MoS, as well as the CoM excursion and velocity during the slip perturbation was quantified using a three-dimensional motion capture system. In the frontal plane, individuals with their arms unconstrained demonstrated greater MoS (0.06 ± 0.03 vs −0.01 ± 0.02 m, p < 0.01), decreased CoM excursion (0.05 ± 0.02 vs 0.08 ± 0.01 m, p = 0.015), and a reduced CoM velocity (0.07 ± 0.03 vs. 0.14 ± 0.02 m/s, p < 0.01) compared to individuals with their arms constrained. In the sagittal plane, individuals with their arms unconstrained demonstrated, decreased CoM excursion (0.83 ± 0.13 vs 1.14 ± 0.20 m, p < 0.01) reduced CoM velocity (1.71 ± 0.08 vs. 1.79 ± 0.07 m/s, p = 0.02), but no differences in margins of stability (0.89 ± 0.13 vs 0.94 ± 0.10 m, p = 0.32). Our findings demonstrate that arm motions during a slip perturbation act to restore balance by minimizing displacement and velocity of the body CoM during a slip event in the frontal plane.