Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Microscopic interpretation of folding ϕ-values using the transition path ensemble
by
Best, Robert B.
, Hummer, Gerhard
in
Biological Sciences
/ Biophysics and Computational Biology
/ Microscopy - methods
/ Mutation
/ Protein Folding
/ Proteins - chemistry
2016
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Microscopic interpretation of folding ϕ-values using the transition path ensemble
by
Best, Robert B.
, Hummer, Gerhard
in
Biological Sciences
/ Biophysics and Computational Biology
/ Microscopy - methods
/ Mutation
/ Protein Folding
/ Proteins - chemistry
2016
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Microscopic interpretation of folding ϕ-values using the transition path ensemble
Journal Article
Microscopic interpretation of folding ϕ-values using the transition path ensemble
2016
Request Book From Autostore
and Choose the Collection Method
Overview
All-atom molecular dynamics simulations now allow us to create movies of proteins folding and unfolding. However, it is difficult to assess the accuracy of the folding mechanisms observed because experiments cannot yet directly resolve events occurring along the transition paths between unfolded and folded states. Protein folding ϕ-values provide residue-resolved information about folding mechanisms by comparing the effects of mutations on folding rates and stability, but determining ϕ-values by separately simulating mutant proteins would be computationally demanding and prone to large statistical errors. Here we use transition path theory to develop a method for computing ϕ-values directly from the transition path ensemble, without the need for additional simulations. This path-based approach uses the full transition path information available from equilibrium folding and unfolding trajectories, or from transition path sampling, and does not require identification of folding transition states. Applying our approach to a set of simulations of 10 small proteins by Shaw and coworkers [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517–520; Piana S, Lindorff-Larsen K, Shaw DE (2011) Biophys J 100(9):L47–L49; and Piana S, Lindorff-Larsen K, Shaw DE (2013) Proc Natl Acad Sci USA 110(15):5915–5920], we find good agreement with experiments in most cases where data are available. We can further resolve the contributions to fractional ϕ-values coming from partial contact formation versus transition path heterogeneity. Although in some cases, there is substantial heterogeneity of folding mechanism, in others, such as Ubiquitin, the mechanism is strongly conserved.
Publisher
National Academy of Sciences
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.