MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach
Journal Article

Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach

2024
Request Book From Autostore and Choose the Collection Method
Overview
The market for smart greenhouses has been valued at USD 1.77 billion in 2022 and is expected to grow to 3.39 billion by 2030. In order to make this more efficient, with the help of Internet of Things (IoT) technology, it is desired to eliminate the problem of traditional agriculture, which has poor monitoring and accuracy control of the parameters of a culture. Climate control decisions in a greenhouse are made based on parameter monitoring systems, which can be remotely controlled. Instead of this adjustment of the measured parameters, it would be preferable from the point of view of energy consumption that they should be calculated at optimal values from the design phase of the greenhouse. For this reason, it would be better to perform an energy simulation of the greenhouse first. For the study carried out in this work, a small greenhouse (mini-greenhouse) was built. It was equipped with an IoT sensor system, which measured indoor climate parameters and could send data to the cloud for future recording and processing. A simplified mathematical model of the heat balance was established, and the measured internal parameters of the mini-greenhouse were compared with those obtained from the simulation. After validating the mathematical model of the mini-greenhouse, this paper aimed to find the optimal position for placing a normal-sized greenhouse. For this, several possible locations and orientations of the greenhouse were compared by running the mathematical model, with which the most unfavorable positions could be eliminated. Then, some considerably cheaper “mini-greenhouses” were made and placed in the locations with the desired orientations. Using sensor systems and technologies similar to those presented in this work, the parameters from all mini-greenhouses can be monitored in real time. This real-time monitoring allows for the simultaneous analysis of all greenhouses, without the disadvantages of data collection directly in the field, with all data being recorded in the cloud and other IoT-specific advantages being made use of. In the end, we can choose the optimal solution for the location of a real-size greenhouse.